MATH 5061 Lecture on 31412020

[Annoucement: PS2 due today, PS3 up.] Recall: E^r D: connection on E π , D : χ (m) × Γ (E) \longrightarrow Γ (E) M° D_x S covariant derivative of $s \in T(E)$ along $X \in \mathfrak{X}(M)$. . tensorial in X, Likbniz in S $log_{11} \cdot f_{1x}$ local "frame" $(S_1,...,S_r) = S$ $D \leq = \sum \omega$ i.e. $D_{x}S_{\alpha} = \sum_{\beta} \omega_{\alpha}^{P_{\alpha}}S_{\beta}$ $D \stackrel{\text{locally}}{=} (\omega_{\alpha}^{\beta})$ connection matrix of 1-forms $\omega = \Sigma \underline{\alpha} : \alpha \times i$ (or 1-forms matrix-valued) $-$ take local frame $e_{i,\,.\,.\,}e_{m}$ of $\mathfrak{X}(M)$ $\omega_{\alpha}^{F} = \sum_{i=1}^{n} \prod_{\alpha_i}^{P} e_i^{T}$ where $\left[\begin{matrix} \vdots\\ \vdots \end{matrix}\right]^{T} = \omega_{\alpha}^{F}(e_i)$ Christoffel $Q:$ How to define " curvature" of D ? \underline{A} : "Curvature" = "non-commutativity of covariant derivatives". $Def²$: Given a connection D on a vector bundle $\pi : \in \rightarrow \mathsf{M}$, We define the curvature of D as a map: For any $X, Y \in \mathfrak{X}(M)$, we take $R(X,Y)$: $T(E) \longrightarrow T(E)$ curvature tensor" defined by $R(x,Y)(s) = D_x(D_y s) - D_y(D_x s) - D_{[x,y]}S$ to ensure that commutativity of to ensure that Cov. denivatives

Note: Clearly
$$
R(x,Y) = -R(Y,x)
$$
, so $R \in T(\Omega/N) \otimes \text{Bad}(E)$)
\n
$$
\frac{N}{2} \int \frac{R(X,Y) \times R(X,Y)}{R(X,Y) \times R(X,Y)} dA E C^{n}(M)
$$
\n
$$
\frac{M}{2} \cdot R(X,Y) (s) = D_{fX}(D_{f}S) - D_{f}(D_{f}S) - D_{f}(X,Y) S^{n}
$$
\n
$$
= 0 + D_{f}(D_{f}S) - D_{f}(D_{f}S) - \frac{1}{2}D_{f}(X,Y) - \frac{1}{2}D_{f}(X,Y) S^{n}
$$
\n
$$
= 0 + D_{f}(D_{f}S) - \frac{1}{2}D_{f}(X,Y) S^{n}
$$
\n
$$
= 0 + D_{f}(D_{f}S) - \frac{1}{2}D_{f}(X,Y) S^{n}
$$
\n
$$
= 0 + D_{f}(X,Y) S^{n}
$$
\nSo, we have established the following:
\n
$$
\frac{1}{2} \int \frac{1}{R} \int \frac{1}{
$$

 $D_{\kappa,x}$ Sa = $W_{\kappa}(1x,y)$ Sp

$$
R(x,Y)(s_{a}) = [X(\omega_{a}^{0}(x)) - Y(\omega_{a}^{0}(x)) - \omega_{a}^{0}((x+1))] \text{ Sp}
$$
\n
$$
+ [\omega_{y}^{0}(x)\omega_{a}^{0}(x) - \omega_{y}^{0}(x)\omega_{a}^{1}(x)] \text{ Sp}
$$
\n
$$
= [\omega_{x}^{0}(x)\omega_{a}^{0}(x) + \sum_{y}^{\infty}\omega_{y}^{0} + \omega_{a}^{0}(x,y)] \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \sum_{y}^{\infty}\omega_{y}^{0} + \omega_{a}^{0}(x,y)] \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \sum_{y}^{\infty}\omega_{y}^{0} + \omega_{a}^{0}(x,y)] \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \sum_{y}^{\infty}\omega_{y}^{0} + \omega_{a}^{0}(x,y)] \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \sum_{y}^{\infty}\omega_{y}^{0} + \omega_{y}^{0}(x,y)] \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \sum_{y}^{\infty}\omega_{y}^{0} + \omega_{y}^{0}(x,y)] \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \omega_{y}^{0}(\omega_{a}^{0}(x, y)) \text{Sp}
$$
\n
$$
= [\omega_{x}^{0}(\omega_{a}^{0}(x, y)) + \omega_{y}^{0}(\omega_{a}^{0}(x, y)) + \omega_{y}^{0}(\omega_{a}^{0}(x, y)) + \omega_{y}^{0}(\omega_{a}^{0}(x, y)) + \omega_{y}^{0}(\omega_{a}^{0}(x, y)) + \omega_{y}^{0}(\
$$

This proves (i).

Recall: Ω = dω + ωα ω
\n
$$
\overline{Q} = d(\overrightarrow{A}^{\prime} \omega A + A^{\prime} dA) + (A^{\prime} \omega A + A^{\prime} dA) \wedge (A^{\prime} \omega A + A^{\prime} dA)
$$
\n
$$
= (\frac{-A^{\prime} \omega A + A^{\prime} dA)}{+ \frac{A^{\prime}}{2} (\omega \omega A - \frac{\omega \times dA}{2})}
$$
\n
$$
+ A^{\prime} (\omega \omega A - \frac{\omega \times dA}{2})
$$
\n
$$
+ A^{\prime} (\omega \omega A - \frac{\omega \times dA}{2})
$$
\n
$$
= A^{\prime} (\omega \omega + \omega \times \omega) + A^{\prime} (\omega \times dA + \frac{\omega \times dA}{2})
$$
\n
$$
= A^{\prime} (\omega + \omega \times \omega) + A^{\prime} (\omega \times dA + \frac{\omega \times dA}{2})
$$
\n
$$
= \frac{A^{\prime} \omega A}{2} \omega A - \frac{\omega \times dA}{2}
$$
\n
$$
= (\Omega - \omega \times \omega) \wedge \omega = \omega \times (\Omega - \omega \times \omega)
$$
\n
$$
= \Omega \wedge \omega = \omega \times \Omega
$$
\n
$$
= \Omega \wedge \omega = \omega \times \Omega
$$
\n
$$
= \frac{A^{\prime} \omega A}{2} \omega A - \omega \times \Omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \omega
$$
\n
$$
= \frac{A}{2} \omega A + \omega \times \
$$

E_x : $\theta \in \Gamma(E^*)$, $(Q_x \theta)(s) = X(\theta(s)) - \theta(Q_x s)$.

Note: $w = (w_{d}^{8})$ has no "jeametric meaning" pointwise. Recall: We can always make $T_{ij}^k(\rho) = 0$ by choosing suitable coord.

Lemma: (Existence of "normal coordinates" at p & M) For any connection D on a vector bundle E over M, fix p & M, Ξ local frame $\Sigma = (s_1, ..., s_r)$ near p s.t $DS_{\alpha}(p) = 0$ for $\alpha = 1, ..., \gamma$. i.e. $W_{\alpha}^{\beta}(\rho) = 0$ (or \iff $\Gamma_{\alpha i}^{\beta}(\rho) = 0$) Sketch of Proof: Fix ANY frame $\frac{S}{2}$ mms $\tilde{\omega} = (\tilde{\omega}_{\alpha}^{\beta})$ connection writ $\frac{S}{2}$ ' nuknown Goal: Find another local frame $S = \frac{S}{2}A$ s.t $W = (W_X)$ conn. Wirt $w = A' \widetilde{\omega} A + A' dA$ $= A^{1}(\overline{w}A+dA)$ Choose A st $(\widetilde{w}A + dA)\varphi$: 0. os

 \underline{Q} : When does a connection D exist on a vector bundle? A: Yes, actually in abundance. M_{avg} . connection exists locally (as $w = (w_{\text{avg}}^p)$) . Can be pieced together to get a globally-defined connection using CI partition of unity (2) the space of connection is "Convex". About (2): D^0 , D^1 connections $D^2 = (1-t)D^0 + t D^1$
on the same bundle E is also a connection of is also a connection on E f on j Recall i
I $\tilde{\omega} = A^{\prime} \omega A + A^{\prime} dA$ is an affine σ σ $\tilde{\omega} - \tilde{\eta} = A'(\omega - \eta) A$ E $\mathbf{C} = \begin{bmatrix} D = D + \theta & \theta \end{bmatrix}$ $\theta \in \frac{\Gamma(\Omega(n) \otimes \text{End}(E))}{\sqrt{\frac{\Gamma(\Omega(n) \otimes \text{End}(E))}{\Gamma(\Omega(n))}}}$

a vector space / IR

Thm: Given $\pi\colon \mathsf{E}\to \mathsf{M}$, there exists a connection $\mathsf D$ on $\mathsf E$.

Fiber metrics on vector bundles

Setup: $R' \rightarrow E$ g: metric on E
 π f vxe M, g_x if $\forall x \in M$, g_x defines an "inner product" on E_x E M Ex9x Def'd we saythat ^a connection ^D is compatible with 3 if $D9 \equiv 0$ (t) $\lfloor \pi$ i.e. $g \in \Gamma(E^* \otimes E^*)$ is parallel × (†) $\langle z \rangle$ $X (g (s_1, s_2)) = g (D_x s_1, s_2) + g (s_1, D_x s_2)$ $\forall x \in X(m), \forall s_i, s_i \in T(E)$ $Q_1 : \exists$ fiber metric β on E ? A1: Yes, in abundance. $Q2$: Given g on E, \exists connection D compatible with 3 ? $A2$: later. $\mathsf{Prop}\colon$ Let $\mathsf D$ is a connection on $\mathsf E$ compatible with a fiber metric $\mathsf g$ on $\mathsf E$. Then $\Omega_{\alpha\beta} = -\Omega_{\beta\alpha}$ where $\Omega_{\alpha\beta} = \theta_{\alpha\gamma} \Omega_{\beta}^{\gamma}$ \hat{L} 2-forms with value in $E^* \circ E^*$

Here, $\beta_{\alpha\beta}:=\partial(S_{\alpha},S_{\beta})$

 R emark: If \leq = (s.,..., sr) is local orthonormal frame of E, then $w^{\dagger} = -w$ and $\boxed{\Omega^{\dagger} = -\Omega}$. "Proof": Differentiate turce: $d\theta_{\alpha\beta} = \langle DS_{\alpha}, S_{\beta} \rangle + \langle S_{\alpha}, DS_{\beta} \rangle$ (E_{x}) Connections on frame bundles Idea: R^r r-dim vector space $GL(r) = \left\{ \text{ basis on } \mathbb{R}^r \right\} = \left\{ A \in M_{rnr}(\mathbb{R}) : A \text{ invertible} \right\}$ I why ' Fix a basis $\underline{s} \rightarrow$ all other basis $\underline{\underline{s}} = \underline{s} A$ Consider the "frame bundle" of E : $GL(r) \longrightarrow F(E)$ F(E) $F(E)_{p} = \{ (p, s, ..., s_{r}) | s, ...$ Sr basis of E_{p} π is principal GL(r)-bundle over M. $p \in M$ $\left(1\right)$ \exists local charts $\hat{\phi}$. $\hat{\pi}$ s.t. (1) \exists local charts $\varphi : \pi(u) \rightarrow V$ x GL(r, $G(L(r) \cong F(E)_{o}$ $\hat{\phi}(\rho, \tilde{\varsigma}) = (\phi(\rho), A)$ $0 0 0$ of $0 0 0$ s GL(r) where $\widetilde{\xi} = \xi A$ I fixed local frame. $\frac{1}{\phi \leftarrow P}$ M M ϕ / P (2) \exists right action of GL(r) on F(E)
 \Rightarrow F(E) \Rightarrow F(E) \Rightarrow F(E) f_1 iberwise: $\forall C \in GL(r)$. $\exists R_{c} : F(E)_{p} \rightarrow F(E)_{p}$

[Reference: Kobayashi-Nomiz "Foundations of DG I"]

Goal: Understand connections from the viewpoint of frame bundle (or more general, on principal G-bundle)

 E^r D: connection Recali: \int \int =S_{1,.} Sr local frame over U $U \subseteq M$ and W_{μ} = connection matrix of 1-forms over U . open $\frac{A_{\text{nd}}}{A}: \quad \underline{S} = \underline{S} A \quad \Rightarrow \quad \widetilde{W} = A^{\prime} \omega A + A^{\prime} dA$.

On the frame bundle of E , locally. $f_i \times g$

 $F(E) \supseteq U \times G L(V)$
 $\hat{\omega}_u = A^{\dagger} \omega_u A + A^{\dagger} a A$ (Ex: understand this and prove fact below) $M = U \int B$
 $M = U$
 $\frac{1}{\beta^*}$ β^* $\Omega^{\prime}(U \wedge G L(W)) \rightarrow \Omega^{\prime}(U)$ any other local frame $\frac{S}{2} = \frac{S}{2}B$ $B(x) \in GL(r)$ $\omega_{\mu} \mapsto e^{x} \omega_{\mu}$

 $FACT: \exists$ I - form (matrix-valued) $\hat{\omega}_u$ on $U \times GL(r)$ s.t. $B^*(\hat{\omega}_u) = \hat{\omega} = B^{\prime} \omega_u B + B^{\prime} dB$. $(=\frac{\omega_{uu} \text{ matrix}}{\omega_r \text{ in } \hat{\mathbb{F}}})$

Similarly, one can do it for the curvature 2-forms: (x, A) $\hat{\Omega}_{\mu}$: = A¹ Ω_{μ} A = d $\hat{\omega}_{\mu}$ + $\hat{\omega}_{\mu}$ $\hat{\omega}_{\mu}$ $U \times \mathbb{G}$ $L(r)$ $\int \int \beta$ $\int \beta^*$ Ω = Cunvature matrix w .r.t $\tilde{\Sigma}$ = $\tilde{\Sigma}$ B \boldsymbol{u}

Prop: (Equivalent characterizations of locally flat connections) TFAE:

- (1) D is a flat connection on E over U (i.e. $\Omega \equiv o$)
- Im is an integrable distribution (2)
- (3) $\exists B: U \rightarrow GL(r)$ st. $B^*(\hat{\omega}_u) \equiv o$ on U
- (3) \exists parallel local frames $\widetilde{S_1},...,\widetilde{S_r}$ on U (ie. $D\widetilde{S_4}$ \equiv 0 on U)